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A method of analyzing non-thin shells of constant thickness 21r is proposed, which is 
based on some properties of Legendre polynomials. 

l. For the case when the middle surface of a shell is closed it is proved that the three- 
dimensional problem of elasticity theory on the construction of the stress-strain state of 
such a shell separates into two problems. Let the shell be referred to the curvilinear CO- 

ordinates OX, @a (it is assumed t~oughout that the Greek indices take on the values 1. 
2, and the Latin indices, the values 1,2,3). 

Then the first of the mentioned problems will be to construct the stress-strain state in 
whichihe displacements vary linearly with e3. It will be called the linear-thickness prob- 
lem. 

The second problem is to construct the stress-strain state characterized by the fact that 
the resultant force and resultant moment would be zero therein in any element normal 
to the middle surface. This requirement is analogous to conditions characterizing the 

so-called boundary layer. Hence, we call the second the problem of the pseudo-boundary 
layer. The solution of both problems should individually be an exact solution of the three- 

dimensional elasticity theory equations. and together they should yield the solution of the 
original problem. 

In the shell with open middle surface conditions on the side surfaces will not be satis- 
fied. To eliminate these discrepancies it is also necessary to utilize the boundary layers. 

Series expansions of the stresses, strains, and displacements in orthogonal Legendre 
polynomials in the form 

are utilized below. 

Here P, (85/k) is the Legendre polynolial of order A. 

2. Let us designate the linear-thickness problem of elasticity theory to be that whose 
solution possesses the following properties: 

a) Satisfies the swain-displace~nt relationships, as well as Hooke’s law for three- 

dime~ional elasticity theory ; 
b) Corresponds to boundary stresses on the surfaces s, and S, , and to mass forces 

whose true distributions can be replaced by any other distributions under the condition 
that the corresponding resultant force and resultant moment in any normal element of 

the shell remain invariant (we call these distributions of the boundary stresses and mass 
forces the equivalent auxiliary distributions) ; 

c) Contain sufficient arbitrariness to satisfy the conditions on the normal edge sur- 
face 81 = ci for the following stress or displacement components in the Legendre ex- 

Utilizing the notation from [l]. let us consider components of the elastic displacement 
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vector in the form 
UE = uo(“) + zu&p), UI = up 

(24 
where u:), t$j, t&r) are functions of 80 and 

x &P/h (2.2) 
Proceeding from the representations (2. l), the strain components can be written as 

finite Legendre expansions N 

TIj = 2 r:j”‘P, (t) (2.3) 
n=* 

2 r’“S’ - 0 a - (?I > n) I 2r’z=o (n4.1,2....) 

The customary rule for summation over repeated subscripts is used,and the vertical 
bars correspond to covariant differentiation in the metric of the middle surface, 

Utilizing the fact that ya3 = 0 because of (2.4), let us write the physical relation- 
ships of elasticity theory thus: 

bu’p = E-&ro~* qQ3', p3903 (2.5) 
Here 

Ewwofi = p (@ - z/&h*) ($Y$L( G”‘G”@ + G”#@ + 2 C”kG’$ 
l-2q . 1 

g @3~3= 2p T; 

0 

"_$ @aC38 

The cofactors of gd in the determinant g = 1 gij 1 are denoted by @j in the last 
equalities. They will be polynomials in z. 

Let us introduce the notation Al 
2 

3n1+1 EtJE$ = s P, (;t) P, (2) Ewa@ dx 

--i 
+1 

2 
E urna 

2l?Z+i WI. (W = S P,Jt)l',(z) E-adz (2Ai) 
-1 

where ETzfTm,, k -ctrn, are coefficients of the Legendre function expansions 

P, (z)E-B, P, (I) Eupa3, respectively, and we note that the integrals (2.6) are com- 
puted directly, wherein only rational functions of + enter in whose denominator the fol- 
lowing expression is contained 

(gi/ u)‘/’ = (1 - k&z&% + &*K)a 
Therefore 

P,(P) I?* = i I:,“;IK; p, (2). 

m 

& (2) J??=3 = 2 EG~W (2.7) 
m==a w 

By using these formulas the coefficients of the Legendre expansions for the stresses can 
be determined 00 00 

fl = x GX&), gQ3 = ZJ CG: k (XI (W 
n=0 t-0 
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The equilibrium equations of three-dimensional elasticity theory are written thus : 

V’B 1% - b,W’ + g + Fs = 0, @‘J ix + b,psab $ g + F3 = 0 _ (2.10) 

It follows from the orthogonali~ condition for Legendre ~lynomials that 
+i 

s 

1 

I’, (3) dx = 0, 
-_I .* s l z~‘,(z)dt= 0 (n 32) 

-1 
Hence, members with subscript. n greater than one in the expansions (2.8) will corre- 

spond to some stress distributions self-equilibrated through the thickness. These members 
may be discarded in the solution of the linear problem. 

We then obtain from (2.3) and (2.10) 

i) + ’ p,FJdrf -_ 0 

-1 

(l)fk(-4,_;_ t’ 
I, c s PI (x) Fsd+ 

) 
= 3 (2.11) 

-1 

On the basis of the properties of the solution of the linear-thickness problem, we note 
that the components Rs, RS and Cd of the resuitant force and the resultant moment are 

It results from these relationships that the first coefficients of the Legendre expansions 
for the mass forces are expressed by Formulas 

P (0) = 23 ’ P-(9! (I)- 538(- l))]. F,oj3 = #- (o”J(i)-a’*(- i))] 

el, = gj 10 - h(cP (i) + a*@ (-- I))] (2.42) 

in which the boundary values ~93, ass are considered known. 

By using these equalities the system of equations C&11) can be written as 

o51= - b&&j + & Rb = 0 (2.13) 

ataJte + bmp$ -I- &Rs = 0, 
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These equalities are a system of equilibrium equations for the linear-thickness prob- 
lem. The corresponding physical equations are obtained from (2.9) 

z 2 

q=n q=n 

The strains are here determined by the geometric relationships (2.4).of the linear- 
thickness problem. Expressing the stresses in terms of the displacements in the equilib- 
rium equations (2.131, we obtain a system of five equations with the five unknowns 

The -three-dimensional components U, , u3 of the displacements are determined from 
(2.1) in terms of the unknowns of this system. 

The stresses oG are determined from the geometric and physical equations of three- 

dime~ional elasticity theory, and we obtain the final expressions for the mass forces 
from the equilibrium equations 

F,; - 
aa 

- oafi tl: + b&*3 - w , F(;J = - CPS fJ - 

which satisfy the integral conditions of the linear-thickness problem according to (2 J2). 
The derived system of equations of the linear-thickness problem permit compliance with 

the five boundary conditions corres~nding to the property (c) of the linear-thickness 
problem. 

Since the displacements are known. we indeed obtain the boundary stresses correspond- 
ing to the linear-thickness problem o$, (@, -& i), which generally do not evidently 

agree with the true values. The solution of the pseudo-boundary-layer problem also per- 

mits correction of these boundary results. 
It can be shown that if stress-strain states with index of variability greater than r/s 

are not taken into account, and terms retained to satisfy the fifth boundary condition are 

discarded, then a modification of classical theory with error h/R as compared to one 

will be obtained. 

3. The pseudo-boundary-layer problems should satisfy the following conditions: 
a) Stresses corresponding to the corrections should satisfy the conditions 

b) Internal stresses corresponding to any cross-sectional element normal to the 

middle surface should have zero resultant force and resultant moment from which it fol- 
lows that o(,,fal and a&@ equal zero ; 

c) The requirement Ltjf”) = (1, t&(l) = 0 should similarly be satisfied in the 

Legendre expansions for the displacements i 
d) Mass forces corresponding to the correction pseudo-boundary-layer problem are 

the difference between the true mass forces and the mass forces Ft,,’ obtained from the 
solution of the linear-thickness problem. 

The pseudo-boundary layer problem is not predetermined since compliance with the 
condition on the edge normal surface is not required. 

There results from the properties of the linear-thickness and boundary layer problems 
that the resultant force and resultant moment of both the surface. and the mass forces 

should equal zero. 
We separate the construction of the solution of the pseudo-boundary-layer problem 
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into two stages. 
The first stage is to determine a particular solution of the three-dimensional equations 

of elasticity theory which will satisfy conditions (a),(b),(c) in Section 3. 
The second stage is also to solve the unpredetermined problem. Homogeneous bound- 

ary conditions are posed on s+ and S_ for it so as not to violate the condition (d) satis- 
fied in the first stage. The mass forces (statically equivalent to zero) should equal the 
difference between the actual mass forces and the mass forces obtained in solving the 

linear-thickness problem and in the first stage of solving the pseudo-boundary-layer prob- 

lem. 
Utilizing the fact that satisfaction of the conditions on the edge normal surface is not 

certain in the pseudo-boundary-layer problem, we assume the middle surface to be refer- 

red to the lines of curvature. 

The coordinate system used will then be tri-orthogonal. 

3.1, First stage in solving the pseudo-boundary-layer problem. 
Let us examine the boundary conditions on S, and S_ by formulating them as: 

Here ~~8 && r22 c+h), $2 bi& are known functions representing the boundary 

correction stresses. 
Let us introduce the notation 

&-(v) = Al (I - g) V-2) 

If =A,At(i - h2/R2,)“1 (1 - h2/RSt)” 

For the sequel, let us note that any boundary conditions can be represented as the super- 
position of boundary conditions corresponding to 

tlf (01, e2) = 4 (el, es), S* (91, e2) =f I (81, e2) (3.1) 

tlf (ei, ey =fh (et, ey, S* (81, e2) =S (ei, ey (3.2) 

The requirement formulated earlier that the stresses be statically equivalent on any 
section normal to the middle surface will be assured if the following conditions are 

imposed: TX =O, S12 =O, N1 =O, GI =O, HI2 =O (1.+2) 

Stress resultants and moments are on the left here. Expressing them in terms of the 
internal stresses of a three-dimensional medium occupied by the shell, we will have 

+!’ -+-I: 

5 
H2~lld6~ = 0, I ’ fYffprlld03 = 0, 

*It 

\ H2rlzd03i== 0 
--I1 4 -h 
+.h +h 
I ew tT12de3 = 0, s Jf srl:,de31 = 0 (C-A (3.3) 

-h -11 

Let us note that these conditions will be satisfied if expansions of the following kind 
are taken for the displacements 
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v 1 =- j~z~zu * i ?I* 
us* = 5 r-pp, 82) Pn(t) (i *2) (3.4) 

n=s 

us = H:H:v& ua* :-r. ; 1.p (elp) P,(r) 

Here $r,(n) (fl*, @), vs!“) (@, e2), Pa@) (is:@) are arbitrary functions, 
For Q, TSs, rss let us take the following expressions which satisfy the boundary con- 

ditions : 
H ;H:Pk (I) h (et, 8’) + _I_ a) (O’r Q* =I H, ml (05 8?, 2) 

r13= - ” w +7i itx 
(I - 2) (3.5) 

HI 

(3.6) 

wherein the functions aa, ato av, atyt s 
$jit @t x* -a;-' 

should equal zero on S, (z = 1) and S, (t =- i) . 
The degree R is even, and Q is odd for conditions of the form (3.1). and, conversely, 

for conditions of the form (3.2). 

From the geometric and physical relationships it follows: 

(3.7) 

= (i j v) (1 - 2v) 
&(I --v$ L 

“;“;“p w. w + s 1 (3.8) 
Relationship (3.7) is satisfied if 

u a = 2(ig+v) U)(fP,tp,S) 

and the condition 

will be satisfied if 

v3* =f -2, (01, W)(Po (z) - P, (t)) + A2 (@t q (Pa (4 - PI w 
We therefore obtain 

a> = EFs 
2(1 +v) = (3.10) 

B = 2(1 fV) I~lfH,’ IAl (01, 02) (& (2) - p, (4) -i- A (Vt @) (4 (4 - pa (4)l 

BY wing the expansion (3.4) and Formula (3.9) We obtain 
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The functions Yr and ‘Pa should satisfy the above-mentioned conditions 

(3.12) 

and ~“e, tit given in the form (3.5). should satisfy the last conditions of (3.3). 
Performing the appropriate substitution , taking account of (3.10). and assumingk >4 

in (3.11). we obtain -c-l 

S H&$$ dt = 0 (1.+2) (3.13) 
-1 

According to (3.11) and (3.13). we will have 

A n;p1 

Integrating by parts we obtain the equivalent conditions 

H:H; yj I’l(“) p, 02) P, (5) g2, = 0 (l-2) 
n=4 

They will be satisfied if it is assumed that 
03 

= c,, (e*, e*) (PO (2) - p7 (4) + D,, we*) (P, (4 - PI (2)) (i c, 2) 

Hence, utilizing (3. ll), we obtain formulas for the functions yt, yg 

hfi (V, 6”) = ATV?r (2) Ys*z - H S & 
dz ml- (i- 2) 

n 

+ 

Conditions (3.12) permit determination of the functions 

c., (05 es a, (e*, w, co. (e*, es a, w w 
Applying Formulas 

PZI (t) - Pi+ (4 = (b + QPSI (4. Pm km = Wr 
we obtain the system 
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17c,,p, et)+ 150,,(0~, e*)= 2(12y) *‘l($ w) s 
( ) 1 t -t 

Therefore, the functions yl, rI’z are determined. 
Formula (3.8) permits finding the functions S (6', 6*, 2) , and from the conditions 

s. (6’. Bt, &i) = 0 

there is obtained a system determining the functions L& (es, 02) and A, (8s. @) 

Therefore, the expansions of q* , @II*, us* have been determined, and the displace- 
ments v,, v2, us have been obtained. The stresses T 1e, ~2~~ ?e, which will satisfy con- 
ditions of the type (3.1) or (3.2) depending on the choice of K and Q in (3.5). (3.6) 
have also been constructed. 

The remaining stresses r,,, rss, r3, are found by differentiation from the geometrical 
and physical relationships and we find the mass forces from the equilibrium equations. 

Therefore, a particular solution corresponding to the first stage of the pseudo-boundary 

layer problem has been effectively constructed. 

8.2, Second stage of solving the pseudo-boundary layer problem. 
The solution corresponding to this stage will be constructed for the particular case 

of a flat plate. Series expansions of the type 00 

v = vl,o”~oo -+ vl,*040 -+ ~,,,*w + v,,a’W i- 2 Vl, ll”k~ (3.14) 

PK” = PK, P,,’ = PK+, o - prr-l’ 
SK+i ’ 

pK, = pK+~l - 'K-t 
2K+i (3.15) 

are taken for the displacements assumed continuous for f 5 1 < i. 
Noting that 

dPE’ 
-= PK’, 

dPx= 

dz 
7 = Pa” = PK, P&fi) = Pi2(fi) = 0 

and substituting (3.15) into (3.14), we obtain w 

Ul = z h,n&a (4 
n-0 

(3.i6) 

From the equivalence of expansions of the form (3.14), (3.16). and taking account of 
the functional properties of the Legendre polynolials, we obtain that the series (3.14) and 
(3.16) have an identical value at each interior point of the interval -1 < z ( 1 . 
For x = -&i the coefficients v~,s”, s,t”, %,a, l+,r’ can be defined so that the series 

(3.14) would take the value g (rtj), and its derivative the value (aoJaf)p~. 
Imposing conditions (c) and (d), and also demanding that the stresses be zero on &and 



Analysis of non-thin shella 1067 

S,, we obtain 9,0° =4.P =s,1’ -D&e1 =-uit.r’ -9.8’ -0 

or.0” = s,s* = or.,’ = 4,*’ = v*.r’ = s,f - 0 

V&O0 - ut.1. - &*a’ =tQs -v,**’ - 0 
Hence OD 

Ul = 2 ~l,r?W (i -2) va = 5 v,,,‘p,’ (3-W 
n-4 n==s 

The arbitrary functions Us,u*, vs,m*, Vl,n* are dmmnined fram tb eqaftiwum equa- 
tions in d~pla~men~ 

(3.18) 

av, -+++++~)+2(ig+v)Fos0 
w 

where A is the two-dimensional Laplace operator, and Ps, Ft, Fs are components of 
the mass correction force which are known in the second stage. Since the resultant force 
and resultant moment of the mass correction forces equal zero in the second stage, we 
will have 

F1. (W, 0’. z) = ; PI@’ (e? 0’) k (SC) (i -2) 
ne) (3.19) 

F~ (01, e*, Z) = 
w-1 

Inserting the expansions (3.17) and (3.19) into (3.18), we obtain 

(3.23) 1 a av, ,’ a5 d 
h.f+ i_2v w -&i-+--g+- ( > = 

+W- i) 
1 %‘L 24% 4-v) 

(i-2v)@n+i)h T-- E Fs 
W-s) + I;llm-o 

I (i -2) 

Au&+ = (2n - 3) (2n - 1) [- 2y) Fp+$_ Lp+] (n>4) 

Equations (3.20) form a system with the unknowns 

5, u* ($5 83, vzns (e*, es), t+s* (es, 6%) 

The functions I,,(*’ (es, es) (i - - 1, 2.3) are known since they depend on quantities 
determined in previous stages, in particular 

Ql (es, es) = 0 (i = 1, 2, 3) 

It should be noted that only the particular solution of the system (3.20) is of interest, 

and the construction of this solution presents no special difficulties since the first two 
equations correspond to the plane problem, and ssa,,_s* is determined from a Poisson- 

type equation. 
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